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Abstract—Existing deep convolutional neural networks (CNNs) require a fixed-size (e.g., 224�224) input image. This requirement is

“artificial” and may reduce the recognition accuracy for the images or sub-images of an arbitrary size/scale. In this work, we equip the

networks with another pooling strategy, “spatial pyramid pooling”, to eliminate the above requirement. The new network structure,

called SPP-net, can generate a fixed-length representation regardless of image size/scale. Pyramid pooling is also robust to object

deformations. With these advantages, SPP-net should in general improve all CNN-based image classification methods. On the

ImageNet 2012 dataset, we demonstrate that SPP-net boosts the accuracy of a variety of CNN architectures despite their different

designs. On the Pascal VOC 2007 and Caltech101 datasets, SPP-net achieves state-of-the-art classification results using a single

full-image representation and no fine-tuning. The power of SPP-net is also significant in object detection. Using SPP-net, we compute

the feature maps from the entire image only once, and then pool features in arbitrary regions (sub-images) to generate fixed-length

representations for training the detectors. This method avoids repeatedly computing the convolutional features. In processing test

images, our method is 24-102� faster than the R-CNN method, while achieving better or comparable accuracy on Pascal VOC 2007.

In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014, our methods rank #2 in object detection and #3 in image

classification among all 38 teams. This manuscript also introduces the improvement made for this competition.

Index Terms—Convolutional neural networks, spatial pyramid pooling, image classification, object detection

Ç

1 INTRODUCTION

WE are witnessing a rapid, revolutionary change in our
vision community, mainly caused by deep convolu-

tional neural networks (CNNs) [1] and the availability of
large scale training data [2]. Deep-networks-based app-
roaches have recently been substantially improving upon
the state of the art in image classification [3], [4], [5], [6],
object detection [5], [7], [8], many other recognition tasks [9],
[10], [11], [12], and even non-recognition tasks.

However, there is a technical issue in the training and
testing of the CNNs: the prevalent CNNs require a fixed
input image size (e.g., 224 � 224), which limits both the
aspect ratio and the scale of the input image. When applied
to images of arbitrary sizes, current methods mostly fit the
input image to the fixed size, either via cropping [3], [4] or
via warping [7], [13], as shown in Fig. 1 (top). But the
cropped region may not contain the entire object, while the
warped content may result in unwanted geometric distor-
tion. Recognition accuracy can be compromised due to the
content loss or distortion. Besides, a pre-defined scale may
not be suitable when object scales vary. Fixing input sizes
overlooks the issues involving scales.

So why do CNNs require a fixed input size? A CNN
mainly consists of two parts: convolutional layers, and
fully-connected layers that follow. The convolutional layers
operate in a sliding-window manner and output feature
maps which represent the spatial arrangement of the activa-
tions (Fig. 2). In fact, convolutional layers do not require a
fixed image size and can generate feature maps of any sizes.
On the other hand, the fully-connected layers need to have
fixed-size/length input by their definition. Hence, the fixed-
size constraint comes only from the fully-connected layers,
which exist at a deeper stage of the network.

In this paper, we introduce a spatial pyramid pooling (SPP)
[14], [15] layer to remove the fixed-size constraint of the net-
work. Specifically, we add an SPP layer on top of the last
convolutional layer. The SPP layer pools the features and
generates fixed-length outputs, which are then fed into the
fully-connected layers (or other classifiers). In other words,
we perform some information “aggregation” at a deeper
stage of the network hierarchy (between convolutional
layers and fully-connected layers) to avoid the need for
cropping or warping at the beginning. Fig. 1 (bottom) shows
the change of the network architecture by introducing the
SPP layer. We call the new network structure SPP-net.

Spatial pyramid pooling [14], [15] (popularly known as
spatial pyramid matching or SPM [15]), as an extension of
the Bag-of-Words (BoW) model [16], is one of the most suc-
cessful methods in computer vision. It partitions the image
into divisions from finer to coarser levels, and aggregates
local features in them. SPP has long been a key component
in the leading and competition-winning systems for classifi-
cation (e.g., [17], [18], [19]) and detection (e.g., [20]) before
the recent prevalence of CNNs. Nevertheless, SPP has not
been considered in the context of CNNs. We note that SPP
has several remarkable properties for deep CNNs: 1) SPP is
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able to generate a fixed-length output regardless of the
input size, while the sliding window pooling used in the
previous deep networks [3] cannot; 2) SPP uses multi-level
spatial bins, while the sliding window pooling uses only a
single window size. Multi-level pooling has been shown to
be robust to object deformations [15]; 3) SPP can pool fea-
tures extracted at variable scales thanks to the flexibility of
input scales. Through experiments we show that all these
factors elevate the recognition accuracy of deep networks.

SPP-net not only makes it possible to generate representa-
tions from arbitrarily sized images/windows for testing, but
also allows us to feed images with varying sizes or scales
during training. Trainingwith variable-size images increases
scale-invariance and reduces over-fitting. We develop a sim-
ple multi-size training method. For a single network to
accept variable input sizes, we approximate it by multiple
networks that share all parameters, while each of these net-
works is trained using a fixed input size. In each epoch we
train the network with a given input size, and switch to
another input size for the next epoch. Experiments show that
this multi-size training converges just as the traditional sin-
gle-size training, and leads to better testing accuracy.

The advantages of SPP are orthogonal to the specific
CNN designs. In a series of controlled experiments on the
ImageNet 2012 dataset, we demonstrate that SPP improves
four different CNN architectures in existing publications
[3], [4], [5] (or their modifications), over the no-SPP counter-
parts. These architectures have various filter numbers/
sizes, strides, depths, or other designs. It is thus reasonable
for us to conjecture that SPP should improve more sophisti-
cated (deeper and larger) convolutional architectures. SPP-
net also shows state-of-the-art classification results on
Caltech101 [21] and Pascal VOC 2007 [22] using only a single
full-image representation and no fine-tuning.

SPP-net also shows great strength in object detection. In
the leading object detection method R-CNN [7], the features
from candidate windows are extracted via deep convolu-
tional networks. This method shows remarkable detection
accuracy on both the VOC and ImageNet datasets. But the
feature computation in R-CNN is time-consuming, because
it repeatedly applies the deep convolutional networks to the
raw pixels of thousands of warped regions per image. In
this paper, we show that we can run the convolutional
layers only once on the entire image (regardless of the num-
ber of windows), and then extract features by SPP-net on
the feature maps. This method yields a speedup of over one
hundred times over R-CNN. Note that training/running a
detector on the feature maps (rather than image regions) is
actually a more popular idea [5], [20], [23], [24]. But SPP-net
inherits the power of the deep CNN feature maps and also
the flexibility of SPP on arbitrary window sizes, which leads
to outstanding accuracy and efficiency. In our experiment,
the SPP-net-based system (built upon the R-CNN pipeline)
computes features 24-102� faster than R-CNN, while has
better or comparable accuracy. With the recent fast proposal
method of EdgeBoxes [25], our system takes 0.5 seconds
processing an image (including all steps). This makes our
method practical for real-world applications.

A preliminary version of this manuscript has been pub-
lished in ECCV 2014. Based on this work, we attended the
competition of ILSVRC 2014 [26], and ranked #2 in object
detection and #3 in image classification (both are provided-
data-only tracks) among all 38 teams. There are a few modi-
fications made for ILSVRC 2014. We show that the SPP-nets
can boost various networks that are deeper and larger
(Section 3.1.2-3.1.4) over the no-SPP counterparts. Further,
driven by our detection framework, we find that multi-
view testing on feature maps with flexibly located/sized
windows (Section 3.1.5) can increase the classification accu-
racy. This manuscript also provides the details of these
modifications.

We have released the code to facilitate future research
(http://research.microsoft.com/en-us/um/people/kahe/).

2 DEEP NETWORKS WITH SPATIAL PYRAMID

POOLING

2.1 Convolutional Layers and Feature Maps

Consider the popular seven-layer architectures [3], [4]. The
first five layers are convolutional, some of which are followed

Fig. 1. Top: Cropping or warping to fit a fixed size. Middle: A conven-
tional CNN. Bottom: our spatial pyramid pooling network structure.

Fig. 2. Visualization of the feature maps. (a) Two images in Pascal VOC 2007. (b) The feature maps of some conv5 filters. The arrows indicate the
strongest responses and their corresponding positions in the images. (c) The ImageNet images that have the strongest responses of the correspond-
ing filters. The green rectangles mark the receptive fields of the strongest responses.
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by pooling layers. These pooling layers can also be consid-
ered as “convolutional”, in the sense that they are using
sliding windows. The last two layers are fully connected,
with an N-way softmax as the output, where N is the num-
ber of categories.

The deep network described above needs a fixed image
size. However, we notice that the requirement of fixed
sizes is only due to the fully-connected layers that demand
fixed-length vectors as inputs. On the other hand, the
convolutional layers accept inputs of arbitrary sizes. The
convolutional layers use sliding filters, and their outputs
have roughly the same aspect ratio as the inputs. These
outputs are known as feature maps [1]—they involve
not only the strength of the responses, but also their spatial
positions.

In Fig. 2, we visualize some feature maps. They are gen-
erated by some filters of the conv5 layer. Fig. 2c shows the
strongest activated images of these filters in the ImageNet
dataset. We see a filter can be activated by some semantic
content. For example, the 55th filter (Fig. 2, bottom left) is
most activated by a circle shape; the 66th filter (Fig. 2, top
right) is most activated by a ^-shape; and the 118th filter
(Fig. 2, bottom right) is most activated by a _-shape. These
shapes in the input images (Fig. 2a) activate the feature
maps at the corresponding positions (the arrows in Fig. 2).

It is worth noticing that we generate the feature maps in
Fig. 2 without fixing the input size. These feature maps
generated by deep convolutional layers are analogous to the
feature maps in traditional methods [27], [28]. In those
methods, SIFT vectors [29] or image patches [28] are densely
extracted and then encoded, e.g., by vector quantization
[15], [16], [30], sparse coding [17], [18], or Fisher kernels
[19]. These encoded features consist of the feature maps,
and are then pooled by Bag-of-Words [16] or spatial pyra-
mids [14], [15]. Analogously, the deep convolutional fea-
tures can be pooled in a similar way.

2.2 The Spatial Pyramid Pooling Layer

The convolutional layers accept arbitrary input sizes, but
they produce outputs of variable sizes. The classifiers
(SVM/softmax) or fully-connected layers require fixed-
length vectors. Such vectors can be generated by the Bag-of-
Words approach [16] that pools the features together.

Spatial pyramid pooling [14], [15] improves BoW in that it
can maintain spatial information by pooling in local spatial
bins. These spatial bins have sizes proportional to the image
size, so the number of bins is fixed regardless of the image
size. This is in contrast to the sliding window pooling of the
previous deep networks [3], where the number of sliding
windows depends on the input size.

To adopt the deep network for images of arbitrary sizes,
we replace the last pooling layer (e.g., pool5, after the last
convolutional layer) with a spatial pyramid pooling layer.
Fig. 3 illustrates our method. In each spatial bin, we pool
the responses of each filter (throughout this paper we use
max pooling). The outputs of the spatial pyramid pooling
are kM-dimensional vectors with the number of bins
denoted as M (k is the number of filters in the last convolu-
tional layer). The fixed-dimensional vectors are the input to
the fully-connected layer.

With spatial pyramid pooling, the input image can be
of any sizes. This not only allows arbitrary aspect ratios,
but also allows arbitrary scales. We can resize the input
image to any scale (e.g., minðw; hÞ=180, 224, . . .) and apply
the same deep network. When the input image is at dif-
ferent scales, the network (with the same filter sizes) will
extract features at different scales. The scales play impor-
tant roles in traditional methods, e.g., the SIFT vectors are
often extracted at multiple scales [27], [29] (determined
by the sizes of the patches and Gaussian filters). We will
show that the scales are also important for the accuracy
of deep networks.

Interestingly, the coarsest pyramid level has a single
bin that covers the entire image. This is in fact a “global
pooling” operation, which is also investigated in several
concurrent works. In [31], [32] a global average pooling is
used to reduce the model size and also reduce overfitting;
in [33], a global average pooling is used on the testing stage
after all fc layers to improve accuracy; in [34], a global max
pooling is used for weakly supervised object recognition.
The global pooling operation corresponds to the traditional
Bag-of-Words method.

2.3 Training the Network

Theoretically, the above network structure can be trained
with standard back-propagation [1], regardless of the input
image size. But in practice the GPU implementations (such
as cuda-convnet [3] and Caffe [35]) are preferably run on fixed
input images. Next we describe our training solution that
takes advantage of these GPU implementations while still
preserving the spatial pyramid pooling behaviors.

2.3.1 Single-Size Training

As in previous works, we first consider a network taking a
fixed-size input (224 � 224) cropped from images. The crop-
ping is for the purpose of data augmentation. For an image
with a given size, we can pre-compute the bin sizes needed
for spatial pyramid pooling. Consider the feature maps after
conv5 that have a size of a � a (e.g., 13 � 13). With a pyra-
mid level of n � n bins, we implement this pooling level as
a sliding window pooling, where the window size
win ¼ da=ne and stride str ¼ ba=nc with d�e and b�c denot-
ing ceiling and floor operations. With an l-level pyramid,

Fig. 3. A network structure with a spatial pyramid pooling layer. Here 256
is the filter number of the conv5 layer, and conv5 is the last convolutional
layer.
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we implement l such layers. The next fully-connected layer
(fc6) will concatenate the l outputs. Fig. 4 shows an example
configuration of three-level pyramid pooling (3 � 3, 2 � 2,
1 � 1) in the cuda-convnet style [3].

The main purpose of our single-size training is to enable
the multi-level pooling behavior. Experiments show that
this is one reason for the gain of accuracy.

2.3.2 Multi-Size Training

Our network with SPP is expected to be applied on images
of any sizes. To address the issue of varying image sizes in
training, we consider a set of pre-defined sizes. We con-
sider two sizes: 180 � 180 in addition to 224 � 224. Rather
than crop a smaller 180 � 180 region, we resize the afore-
mentioned 224 � 224 region to 180 � 180. So the regions at
both scales differ only in resolution but not in content/lay-
out. For the network to accept 180 � 180 inputs, we imple-
ment another fixed-size-input (180 � 180) network. The
feature map size after conv5 is a � a ¼ 10 � 10 in this case.
Then we still use win ¼ da=ne and str ¼ ba=nc to imple-
ment each pyramid pooling level. The output of the spatial
pyramid pooling layer of this 180-network has the same
fixed length as the 224-network. As such, this 180-network
has exactly the same parameters as the 224-network in
each layer. In other words, during training we implement
the varying-input-size SPP-net by two fixed-size networks
that share parameters.

To reduce the overhead to switch from one network (e.g.,
224) to the other (e.g., 180), we train each full epoch on one
network, and then switch to the other one (keeping all
weights) for the next full epoch. This is iterated. In experi-
ments, we find the convergence rate of this multi-size train-
ing to be similar to the above single-size training.

The main purpose of our multi-size training is to simu-
late the varying input sizes while still leveraging the exist-
ing well-optimized fixed-size implementations. Besides the
above two-scale implementation, we have also tested a vari-
ant using s� s as input where s is randomly and uniformly
sampled from ½180; 224� at each epoch. We report the results
of both variants in the experiment section.

Note that the above single/multi-size solutions are for
training only. At the testing stage, it is straightforward to
apply SPP-net on images of any sizes.

3 SPP-NET FOR IMAGE CLASSIFICATION

3.1 Experiments on ImageNet 2012 Classification

We train the networks on the 1,000-category training set of
ImageNet 2012. Our training algorithm follows the practices
of previous work [3], [4], [36]. The images are resized so
that the smaller dimension is 256, and a 224 � 224 crop is
picked from the center or the four corners from the entire
image.1 The data are augmented by horizontal flipping and
color altering [3]. Dropout [3] is used on the two fully-con-
nected layers. The learning rate starts from 0.01, and is
divided by 10 (twice) when the error plateaus. Our imple-
mentation is based on the publicly available code of cuda-
convnet [3] and Caffe [35]. All networks in this paper can be
trained on a single GeForce GTX Titan GPU (6 GB memory)
within two to four weeks.

3.1.1 Baseline Network Architectures

The advantages of SPP are independent of the convolutional
network architectures used. We investigate four different
network architectures in existing publications [3], [4], [5]
(or their modifications), and we show SPP improves the
accuracy of all these architectures. These baseline architec-
tures are in Table 1 and briefly introduced below:

� ZF-5. This architecture is based on Zeiler and
Fergus’s (ZF) “fast” (smaller) model [4]. The number
indicates five convolutional layers.

� Convnet*-5. This is a modification on Krizhevsky
et al.’s network [3]. We put the two pooling layers
after conv2 and conv3 (instead of after conv1 and
conv2). As a result, the feature maps after each layer
have the same size as ZF-5.

� Overfeat-5/7. This architecture is based on the Over-
feat paper [5], with some modifications as in [6]. In
contrast to ZF-5/Convnet*-5, this architecture pro-
duces a larger feature map (18� 18 instead of
13� 13) before the last pooling layer. A larger filter
number (512) is used in conv3 and the following con-
volutional layers. We also investigate a deeper archi-
tecture with seven convolutional layers, where conv3

to conv7 have the same structures.
In the baseline models, the pooling layer after the last con-
volutional layer generates 6� 6 feature maps, with two
4096-d fc layers and a 1000-way softmax layer following.
Our replications of these baseline networks are in Table 2a.
We train 70 epochs for ZF-5 and 90 epochs for the others.
Our replication of ZF-5 is better than the one reported in [4].
This gain is because the corner crops are from the entire
image, as is also reported in [36].

3.1.2 Multi-Level Pooling Improves Accuracy

In Table 2b we show the results using single-size training.
The training and testing sizes are both 224 � 224. In these
networks, the convolutional layers have the same structures
as the corresponding baseline models, whereas the pooling
layer after the final convolutional layer is replaced with the
SPP layer. For the results in Table 2, we use a four-level

Fig. 4. An example three-level pyramid pooling in the cuda-convnet
style [3]. Here sizeX is the size of the pooling window. This configu-
ration is for a network whose feature map size of conv5 is 13 �13,
so the pool3�3, pool2�2, and pool1�1 layers will have 3 � 3, 2 � 2,
and 1 � 1 bins respectively.

1. In [3], the four corners are picked from the corners of the central
256 � 256 crop.
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pyramid. The pyramid is {6 � 6, 3 � 3, 2 � 2, 1 � 1} (totally
50 bins). For fair comparison, we still use the standard 10-
view prediction with each view a 224 � 224 crop. Our
results in Table 2b show considerable improvement over
the no-SPP baselines in Table 2a. Interestingly, the largest
gain of top-1 error (1.65 percent) is given by the most accu-
rate architecture. Since we are still using the same 10
cropped views as in (a), these gains are solely because of
multi-level pooling.

It is worth noticing that the gain of multi-level pooling
is not simply due to more parameters; rather, it is because
the multi-level pooling is robust to the variance in object
deformations and spatial layout [15]. To show this, we
train another ZF-5 network with a different 4-level pyra-
mid: {4 � 4, 3 � 3, 2 � 2, 1 � 1} (totally 30 bins). This net-
work has fewer parameters than its no-SPP counterpart,
because its fc6 layer has 30 � 256-d inputs instead of 36 �
256-d. The top-1/top-5 errors of this network are 35.06/
14.04. This result is similar to the 50-bin pyramid above
(34.98/14.14), but considerably better than the no-SPP
counterpart (35.99/14.76).

3.1.3 Multi-Size Training Improves Accuracy

Table 2c shows our results using multi-size training. The
training sizes are 224 and 180, while the testing size is still
224. We still use the standard 10-view prediction. The top-
1/top-5 errors of all architectures further drop. The top-1
error of SPP-net (Overfeat-7) drops to 29.68 percent, which

is 2.33 percent better than its no-SPP counterpart and 0.68
percent better than its single-size trained counterpart.

Besides using the two discrete sizes of 180 and 224, we
have also evaluated using a random size uniformly sampled
from ½180; 224�. The top-1/5 error of SPP-net (Overfeat-7) is
30.06/10.96 percent. The top-1 error is slightly worse than
the two-size version, possibly because the size of 224 (which
is used for testing) is visited less. But the results are still bet-
ter the single-size version.

There are previous CNN solutions [5], [36] that deal with
various scales/sizes, but they are mostly based on testing. In
Overfeat [5] and Howard’s method [36], the single network
is applied at multiple scales in the testing stage, and the
scores are averaged. Howard further trains two different net-
works on low/high-resolution image regions and averages
the scores. To our knowledge, ourmethod is the first one that
trains a single networkwith input images of multiple sizes.

3.1.4 Full-Image Representations Improve Accuracy

Next we investigate the accuracy of the full-image views.
We resize the image so that minðw; hÞ ¼ 256 while maintain-
ing its aspect ratio. The SPP-net is applied on this full image
to compute the scores of the full view. For fair comparison,
we also evaluate the accuracy of the single view in the cen-
ter 224 � 224 crop (which is used in the above evaluations).
The comparisons of single-view testing accuracy are in
Table 3. Here we evaluate ZF-5/Overfeat-7. The top-1 error
rates are all reduced by the full-view representation. This
shows the importance of maintaining the complete content.

TABLE 2
Error Rates in the Validation Set of ImageNet 2012

All the results are obtained using standard 10-view testing. In the brackets are the gains over the “no SPP” baselines.

TABLE 1
Network Architectures: Filter Number � Filter Size (e.g., 96� 72), Filter Stride (e.g., str 2), Pooling Window Size

(e.g., Pool 32), and the Output Feature Map Size (e.g., map size 55� 55)

LRN represents local response normalization. The padding is adjusted to produce the expected output feature map size.
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Even though our network is trained using square images
only, it generalizes well to other aspect ratios.

Comparing Tables 2 and 3, we find that the combination
of multiple views is substantially better than the single full-
image view. However, the full-image representations
are still of good merits. First, we empirically find that
(discussed in the next section) even for the combination of
dozens of views, the additional two full-image views (with
flipping) can still boost the accuracy by about 0.2 percent.
Second, the full-image view is methodologically consistent
with the traditional methods [15], [17], [19] where the
encoded SIFT vectors of the entire image are pooled
together. Third, in other applications such as image retrieval
[37], an image representation, rather than a classification
score, is required for similarity ranking. A full-image repre-
sentation can be preferred.

3.1.5 Multi-View Testing on Feature Maps

Inspired by our detection algorithm (described in the next
section), we further propose a multi-view testing method
on the feature maps. Thanks to the flexibility of SPP, we can
easily extract the features from windows (views) of arbi-
trary sizes from the convolutional feature maps.

On the testing stage, we resize an image so minðw; hÞ ¼ s
where s represents a predefined scale (like 256). Then we
compute the convolutional feature maps from the entire
image. For the usage of flipped views, we also compute the
feature maps of the flipped image. Given any view (win-
dow) in the image, we map this window to the feature
maps (the way of mapping is in Appendix), and then use
SPP to pool the features from this window (see Fig. 5). The
pooled features are then fed into the fc layers to compute
the softmax score of this window. These scores are averaged
for the final prediction. For the standard 10-view, we
use s ¼ 256 and the views are 224 � 224 windows on the
corners or center. Experiments show that the top-5 error of
the 10-view prediction on feature maps is within 0.1 percent
around the original 10-view prediction on image crops.

We further apply this method to extract multiple views
from multiple scales. We resize the image to six scales
s 2 f224; 256; 300; 360; 448; 560g and compute the feature
maps on the entire image for each scale. We use 224� 224
as the view size for any scale, so these views have differ-
ent relative sizes on the original image for different
scales. We use 18 views for each scale: one at the center,

four at the corners, and four on the middle of each side,
with/without flipping (when s ¼ 224 there are six differ-
ent views). The combination of these 96 views reduces
the top-5 error from 10.95 to 9.36 percent. Combining the
two full-image views (with flipping) further reduces the
top-5 error to 9.14 percent.

In the Overfeat paper [5], the views are also extracted
from the convolutional feature maps instead of image crops.
However, their views cannot have arbitrary sizes; rather,
the windows are those where the pooled features match
the desired dimensionality. We empirically find that these
restricted windows are less beneficial than our flexibly
located/sized windows.

3.1.6 Summary and Results for ILSVRC 2014

In Table 4 we compare with previous state-of-the-art meth-
ods. Krizhevsky et al.’s [3] is the winning method in ILSVRC
2012; Overfeat [5], Howard’s [36], and Zeiler and Fergus’s [4]
are the leading methods in ILSVRC 2013. We only consider
single-network performance for manageable comparisons.

Our best single network achieves 9.14 percent top-5
error on the validation set. This is exactly the single-
model entry we submitted to ILSVRC 2014 [26]. The top-5
error is 9.08 percent on the testing set (ILSVRC 2014 has
the same training/validation/testing data as ILSVRC
2012). After combining eleven models, our team’s result
(8.06 percent) is ranked #3 among all 38 teams attending
ILSVRC 2014 (Table 5). Since the advantages of SPP-net
should be in general independent of architectures, we
expect that it will further improve the deeper and larger
convolutional architectures [32], [33].

3.2 Experiments on VOC 2007 Classification

Our method can generate a full-view image representation.
With the above networks pre-trained on ImageNet, we
extract these representations from the images in the target
datasets and re-train SVM classifiers [38]. In the SVM train-
ing, we intentionally do not use any data augmentation (flip/
multi-view).We l2-normalize the features for SVM training.

The classification task in Pascal VOC 2007 [22]
involves 9,963 images in 20 categories. 5,011 images are

TABLE 3
Error Rates in the Validation Set of ImageNet 2012

Using a Single View

The images are resized sominðw; hÞ ¼ 256. The crop view is the central 224 �
224 of the image.

Fig. 5. Pooling features from arbitrary windows on feature maps.
The feature maps are computed from the entire image. The pooling is
performed in candidate windows.
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for training, and the rest are for testing. The performance
is evaluated by mean Average Precision (mAP). Table 6
summarizes the results.

We start from a baseline in Table 6a. The model is ZF-5
without SPP. To apply this model, we resize the image so
that its smaller dimension is 224, and crop the center 224 �
224 region. The SVM is trained via the features of a layer.
On this dataset, the deeper the layer is, the better the result
is. In Table 6b, we replace the no-SPP net with our SPP-net.
As a first-step comparison, we still apply the SPP-net on the
center 224 � 224 crop. The results of the fc layers improve.
This gain is mainly due to multi-level pooling.

Table 6c shows our results on full images, where the
images are resized so that the shorter side is 224. We find
that the results are considerably improved (78.39 versus
76.45 percent). This is due to the full-image representation
that maintains the complete content.

Because the usage of our network does not depend on
scale, we resize the images so that the smaller dimension is s
and use the same network to extract features. We find that
s ¼ 392 gives the best results (Table 6d) based on the valida-
tion set. This is mainly because the objects occupy smaller
regions in VOC 2007 but larger regions in ImageNet, so the
relative object scales are different between the two sets. These
results indicate scale matters in the classification tasks, and
SPP-net can partially address this “scale mismatch” issue.

In Table 6e the network architecture is replaced with our
best model (Overfeat-7, multi-size trained), and the mAP
increases to 82.44 percent. Table 8 summarizes our results

and the comparisons with the state-of-the-art methods.
Among these methods, VQ [15], LCC [18], and FK [19] are
all based on spatial pyramids matching, and [4], [6], [13],
[34] are based on deep networks. In these results, Oquab
et al.’s (77.7 percent) and Chatfield et al.’s (82.42 percent)
are obtained by network fine-tuning and multi-view testing.
Our result is comparable with the state of the art, using only
a single full-image representation and without fine-tuning.

3.3 Experiments on Caltech101

The Caltech101 dataset [21] contains 9,144 images in 102 cat-
egories (one background). We randomly sample 30 images
per category for training and up to 50 images per category
for testing. We repeat 10 random splits and average the
accuracy. Table 7 summarizes our results.

There are some common observations in the Pascal VOC
2007 and Caltech101 results: SPP-net is better than the no-
SPP net (Table 7b versus Table 7a), and the full-view repre-
sentation is better than the crop (Table 7c versus Table 7b).
But the results in Caltech101 have some differences with
Pascal VOC. The fully-connected layers are less accurate,
and the SPP layers are better. This is possibly because the
object categories in Caltech101 are less related to those in
ImageNet, and the deeper layers are more category-special-
ized. Further, we find that the scale 224 has the best perfor-
mance among the scales we tested on this dataset. This is
mainly because the objects in Caltech101 also occupy large
regions of the images, as is the case of ImageNet.

Besides cropping, we also evaluate warping the image to
fit the 224 � 224 size. This solution maintains the complete
content, but introduces distortion. On the SPP (ZF-5) model,
the accuracy is 89.91 percent using the SPP layer as fea-
tures—lower than 91.44 percent which uses the same model
on the undistorted full image.

Table 8 summarizes our results compared with the state-
of-the-art methods on Caltech101. Our result (93.42 percent)
exceeds the previous record (88.54 percent) by a substantial
margin (4.88 percent).

4 SPP-NET FOR OBJECT DETECTION

Deep networks have been used for object detection. We
briefly review the recent state-of-the-art R-CNN method [7].

TABLE 4
Error Rates in ImageNet 2012

All the results are based on a single network. The number of views in Overfeat depends on the scales and strides, for which there are several hundreds
at the finest scale.

TABLE 5
The Competition Results of ILSVRC 2014 Classification [26]

The best entry of each team is listed.
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R-CNN first extracts about 2,000 candidate windows from
each image via selective search (SS) [20]. Then the image
region in each window is warped to a fixed size (227 � 227).
A pre-trained deep network is used to extract the feature of
each window. A binary SVM classifier is then trained on
these features for detection. R-CNN generates results of
compelling quality and substantially outperforms previous
methods. However, because R-CNN repeatedly applies the
deep convolutional network to about 2,000 windows per
image, it is time-consuming. Feature extraction is the major
timing bottleneck in testing.

Our SPP-net can also be used for object detection. We
extract the feature maps from the entire image only once
(possibly at multiple scales). Then we apply the spatial pyra-
mid pooling on each candidate window of the feature maps
to pool a fixed-length representation of this window (see

Fig. 5). Because the time-consuming convolutions are only
applied once, ourmethod can run orders of magnitude faster.

Our method extracts window-wise features from regions
of the feature maps, while R-CNN extracts directly from
image regions. In previous works, the Deformable Part
Model (DPM) [23] extracts features from windows in HOG
[24] feature maps, and the Selective Search method [20]
extracts from windows in encoded SIFT feature maps. The
Overfeat detection method [5] also extracts from windows
of deep convolutional feature maps, but needs to pre-define
the window size. On the contrary, our method enables fea-
ture extraction in arbitrary windows from the deep convo-
lutional feature maps.

4.1 Detection Algorithm

We use the “fast” mode of selective search [20] to gener-
ate about 2,000 candidate windows per image. Then we
resize the image such that minðw; hÞ ¼ s, and extract the
feature maps from the entire image. We use the SPP-net
model of ZF-5 (single-size trained) for the time being. In
each candidate window, we use a four-level spatial pyr-
amid (1 � 1, 2 � 2, 3 � 3, 6 � 6, totally 50 bins) to pool
the features. This generates a 12,800-d (256 � 50) repre-
sentation for each window. These representations are
provided to the fully-connected layers of the network.
Then we train a binary linear SVM classifier for each
category on these features.

Our implementation of the SVM training follows [7], [20].
We use the ground-truth windows to generate the positive
samples. The negative samples are those overlapping a pos-
itive window by at most 30 percent (measured by the inter-
section-over-union (IoU) ratio). Any negative sample is
removed if it overlaps another negative sample by more

TABLE 8
Classification Results for Pascal VOC 2007 (mAP) and Cal-

tech101 (Accuracy)

ynumbers reported by [27]. zour implementation as in Table 6a.

TABLE 6
Classification mAP in Pascal VOC 2007

For SPP-net, the pool5=7 layer uses the 6 � 6 pyramid level.

TABLE 7
Classification Accuracy in Caltech101

For SPP-net, the pool5=7 layer uses the 6 � 6 pyramid level.

HE ET AL.: SPATIAL PYRAMID POOLING IN DEEP CONVOLUTIONAL NETWORKS FOR VISUAL RECOGNITION 1911



than 70 percent. We apply the standard hard negative min-
ing [23] to train the SVM. This step is iterated once. It takes
less than 1 hour to train SVMs for all 20 categories. In test-
ing, the classifier is used to score the candidate windows.
Then we use non-maximum suppression [23] (threshold of
30 percent) on the scored windows.

Our method can be improved by multi-scale feature
extraction. We resize the image such that minðw; hÞ ¼
s 2 S ¼ f480; 576; 688; 864; 1;200g, and compute the feature
maps of conv5 for each scale. One strategy of combining the
features from these scales is to pool them channel-by-chan-
nel. But we empirically find that another strategy provides
better results. For each candidate window, we choose a sin-
gle scale s 2 S such that the scaled candidate window has a
number of pixels closest to 224 � 224. Then we only use
the feature maps extracted from this scale to compute the
feature of this window. If the pre-defined scales are dense
enough and the window is approximately square, our
method is roughly equivalent to resizing the window to
224 � 224 and then extracting features from it. Nevertheless,
our method only requires computing the feature maps once
(at each scale) from the entire image, regardless of the num-
ber of candidate windows.

We also fine-tune our pre-trained network, following [7].
Since our features are pooled from the conv5 feature maps
from windows of any sizes, for simplicity we only fine-tune
the fully-connected layers. In this case, the data layer accepts
the fixed-length pooled features after conv5, and the fc6;7
layers and a new 21-way (one extra negative category) fc8
layer follow. The fc8 weights are initialized with a Gaussian
distribution of s ¼ 0.01. We fix all the learning rates to 1e-4
and then adjust to 1e-5 for all three layers. During fine-tuning,
the positive samples are those overlapping with a ground-
truth window by ½0:5; 1�, and the negative samples by
½0:1; 0:5Þ. In each mini-batch, 25 percent of the samples are
positive. We train 250k mini-batches using the learning rate
1e-4, and then 50 k mini-batches using 1e-5. Because we only
fine-tune the fc layers, the training is very fast and takes about
2 hours on the GPU (excluding pre-caching feature maps
which takes about 1 hour). Also following [7], we use bound-
ing box regression to post-process the prediction windows.
The features used for regression are the pooled features from
conv5 (as a counterpart of the pool5 features used in [7]). The
windows used for the regression training are those overlap-
pingwith a ground-truthwindow by at least 50 percent.

4.2 Detection Results

We evaluate our method on the detection task of the Pascal
VOC 2007 dataset. Table 9 shows our results on various
layers, by using one-scale (s ¼ 688) or five-scale. Here the R-
CNN results are as reported in [7] using the AlexNet [3]
with five conv layers. Using the pool5 layers (in our case the
pooled features), our result (44.9 percent) is comparable
with R-CNN’s result (44.2 percent). But using the non-fine-
tuned fc6 layers, our results are inferior. An explanation is
that our fc layers are pre-trained using image regions, while
in the detection case they are used on the feature map
regions. The feature map regions can have strong activa-
tions near the window boundaries, while the image regions
may not. This difference of usages can be addressed by fine-
tuning. Using the fine-tuned fc layers (ftfc6;7), our results
are comparable with or slightly better than the fine-tuned
results of R-CNN. After bounding box regression, our five-
scale result (59.2 percent) is 0.7 percent better than R-CNN
(58.5 percent), and our one-scale result (58.0 percent) is 0.5
percent worse.

In Table 10 we further compare with R-CNN using the
same pre-trained model of SPPnet (ZF-5). In this case, our
method and R-CNN have comparable averaged scores. The
R-CNN result is boosted by this pre-trained model. This is
because of the better architecture of ZF-5 than AlexNet, and
also because of the multi-level pooling of SPPnet (if using
the no-SPP ZF-5, the R-CNN result drops). Table 11 shows
the results for each category.

Table 11 also includes additional methods. Selective
Search [20] applies spatial pyramid matching on SIFT fea-
ture maps. DPM [23] and Regionlet [39] are based on HOG
features [24]. The Regionlet method improves to 46.1 per-
cent [8] by combining various features including conv5.
DetectorNet [40] trains a deep network that outputs pixel-
wise object masks. This method only needs to apply the
deep network once to the entire image, as is the case for our
method. But this method has lower mAP (30.5 percent).

4.3 Complexity and Running Time

Despite having comparable accuracy, our method is much
faster than R-CNN. The complexity of the convolutional fea-
ture computation in R-CNN is Oðn � 2272Þ with the window
number n (�2,000). This complexity of our method is

Oðr � s2Þ at a scale s, where r is the aspect ratio. Assume r is
about 4/3. In the single-scale version when s ¼ 688, this
complexity is about 1/160 of R-CNN’s; in the five-scale ver-
sion, this complexity is about 1/24 of R-CNN’s.

TABLE 10
Detection Results (mAP) on Pascal VOC 2007, Using

the Same Pre-Trained Model of SPP (ZF-5)

TABLE 9
Detection Results (mAP) on Pascal VOC 2007

“ft” and “bb” denote fine-tuning and bounding box regression.
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In Table 10, we provide a fair comparison on the running
time of the feature computation using the same SPP (ZF-5)
model. The implementation of R-CNN is from the code pub-
lished by the authors implemented in Caffe [35]. We also
implement our feature computation in Caffe. In Table 10 we
evaluate the average time of 100 random VOC images using
GPU. R-CNN takes 14.37s per image for convolutions, while
our one-scale version takes only 0.053 s per image. So ours is
270� faster than R-CNN. Our five-scale version takes 0.293 s
per image for convolutions, so is 49� faster than R-CNN.
Our convolutional feature computation is so fast that the
computational time of fc layers takes a considerable portion.
Table 10 shows that the GPU time of computing the 4,096-d
fc7 features is 0.089 s per image. Considering both convolu-
tional and fully-connected features, our one-scale version is
102� faster than R-CNN and is 1.2 percent inferior; our
five-scale version is 38� faster and has comparable results.

We also compares the running time in Table 9 where R-
CNN uses AlexNet [3] as is in the original paper [7]. Our
method is 24� to 64� faster. Note that the AlexNet [3] has
the same number of filters as our ZF-5 on each conv layer.
The AlexNet is faster because it uses splitting on some
layers, which was designed for two GPUs in [3].

We further achieve an efficient full system with the help
of the recent window proposal method [25]. The Selective
Search proposal [20] takes about 1-2 seconds per image on a
CPU. The method of EdgeBoxes [25] only takes �0.2 s. Note
that it is sufficient to use a fast proposal method during test-
ing only. Using the same model trained as above (using SS),
we test proposals generated by EdgeBoxes only. The mAP
is 52.8 without bounding box regression. This is reasonable
considering that EdgeBoxes are not used for training. Then
we use both SS and EdgeBox as proposals in the training
stage, and adopt only EdgeBoxes in the testing stage. The
mAP is 56.3 without bounding box regression, which is bet-
ter than 55.2 (Table 10) due to additional training samples.
In this case, the overall testing time is �0.5 s per image

including all steps (proposal and recognition). This makes
our method practical for real-world applications.

Fig. 6 shows some visual examples of our results.

4.4 Model Combination for Detection

Model combination is an important strategy for boosting
CNN-based classification accuracy [3]. We propose a simple
combination method for detection.

We pre-train another network in ImageNet, using the
same structure but different random initializations. Then
we repeat the above detection algorithm. Table 12 (SPP-net
(2)) shows the results of this network. Its mAP is compara-
ble with the first network (59.1 versus 59.2 percent), and
outperforms the first network in 11 categories.

Given the twomodels,we first use eithermodel to score all
candidate windows on the test image. Thenwe perform non-
maximum suppression on the union of the two sets of candi-
date windows (with their scores). A more confident window
given by one method can suppress those less confident given
by the other method. After combination, the mAP is boosted
to 60.9 percent (Table 12). In 17 out of all 20 categories the
combination performs better than either individual model.
This indicates that the twomodels are complementary.

We further find that the complementarity is mainly
because of the convolutional layers. We have tried to com-
bine two randomly initialized fine-tuned results of the same
convolutional model, and found no gain.

4.5 ILSVRC 2014 Detection

The ILSVRC 2014 detection [26] task involves 200 categories.
There are �450 k/20 k/40 k images in the training/valida-
tion/testing sets. We focus on the task of the provided-data-
only track (the 1000-category CLS training data is not
allowed to use).

There are three major differences between the detection
(DET) and classification (CLS) training datasets, which

TABLE 11
Comparisons of Detection Results on Pascal VOC 2007

TABLE 12
Detection Results on VOC 2007 Using Model Combination

The results of both models use “ftfc7 bb”.
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greatly impacts the pre-training quality. First, the DET train-
ing data is merely 1/3 of the CLS training data. This seems to
be a fundamental challenge of the provided-data-only DET
task. Second, the category number of DET is 1/5 of CLS. To
overcome this problem, we harness the provided subcate-
gory labels2 for pre-training. There are totally 499 non-over-
lapping subcategories (i.e., the leaf nodes in the provided
category hierarchy). So we pre-train a 499-category network
on the DET training set. Third, the distributions of object
scales are different between DET/CLS training sets. The
dominant object scale in CLS is about 0.8 of the image length,
but in DET is about 0.5. To address the scale difference, we
resize each training image to minðw; hÞ ¼ 400 (instead of
256), and randomly crop 224� 224 views for training. A crop

is only used when it overlaps with a ground truth object by
at least 50 percent.

We verify the effect of pre-training on Pascal VOC
2007. For a CLS-pre-training baseline, we consider the
pool5 features (mAP 43.0 percent in Table 9). Replaced
with a 200-category network pre-trained on DET, the
mAP significantly drops to 32.7 percent. A 499-category
pre-trained network improves the result to 35.9 percent.
Interestingly, even if the amount of training data do not
increase, training a network of more categories boosts
the feature quality. Finally, training with minðw; hÞ ¼ 400
instead of 256 further improves the mAP to 37.8 percent.
Even so, we see that there is still a considerable gap to
the CLS-pre-training result. This indicates the importance
of big data to deep learning.

For ILSVRC 2014, we train a 499-category Overfeat-7
SPP-net. The remaining steps are similar to the VOC 2007
case. Following [7], we use the validation set to generate the

Fig. 6. Example detection results of “SPP-net ftfc7 bb” on the Pascal VOC 2007 testing set (59.2 percent mAP). All windows with scores > 0 are
shown. The predicted category/score are marked. The window color is associated with the predicted category. These images are manually selected
because we find them impressive. Visit our project website to see all 4,952 detection results in the testing set.

2. Using the provided subcategory labels is allowed, as is explicitly
stated in the competition introduction.
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positive/negative samples, with windows proposed by the
selective search fast mode. The training set only contributes
positive samples using the ground truth windows. We fine-
tune the fc layers and then train the SVMs using the samples
in both validation and training sets. The bounding box
regression is trained on the validation set.

Our single model leads to 31.84 percent mAP in the
ILSVRC 2014 testing set [26]. We combine six similar mod-
els using the strategy introduced in this paper. The mAP is
35.11 percent in the testing set [26]. This result ranks #2 in
the provided-data-only track of ILSVRC 2014 (Table 13)
[26]. The winning result is 37.21 percent from NUS, which
uses contextual information.

Our system still shows great advantages on speed for this
dataset. It takes our single model 0.6 seconds (0.5 for conv,
0.1 for fc, excluding proposals) per testing image on a GPU
extracting convolutional features from all five scales. Using
the same model, it takes 32 seconds per image in the way of
RCNN. For the 40 k testing images, our method requires
8 GPU�hours to compute convolutional features, while
RCNN would require 15 GPU�days.

5 CONCLUSION

SPP is a flexible solution for handling different scales, sizes,
and aspect ratios. These issues are important in visual rec-
ognition, but received little consideration in the context of
deep networks. We have suggested a solution to train a
deep network with a spatial pyramid pooling layer. The
resulting SPP-net shows outstanding accuracy in classifica-
tion/detection tasks and greatly accelerates DNN-based
detection. Our studies also show that many time-proven
techniques/insights in computer vision can still play impor-
tant roles in deep-networks-based recognition.

APPENDIX A
In the Appendix, we describe a few technical details that
may impact the accuracy.

Mapping a window to feature maps. In the detection algo-
rithm (and multi-view testing on feature maps), a window
is given in the image domain, but we use it to crop the con-
volutional feature maps (e.g., conv5) which have been sub-
sampled several times. So we need to align the window on
the feature maps. In our implementation, we project the cor-
ner point of a window onto a pixel in the feature maps, such
that this corner point (in the image domain) is closest to the
center of the receptive field of that pixel. This projection
depends on the network architecture. For the ZF-5 network,

a pixel in conv5 corresponds to a 139 � 139-pixel recep-
tive field in the image domain, and the effective stride of
conv5 in the image domain is 16. Denote x and xconv5 as
the coordinates in the image domain and conv5 (we use
the MATLAB convention, i.e., x starts from 1). We project
the top-left corner by: xconv5 ¼ bðx� 139=2þ 63Þ=16c þ 1.
Here 139/2 is the radius of the receptive field, 16 is the
effective stride, and 63 is an offset. The offset is computed
by the top-left corner of the receptive field in the image
domain. Similarly, we project the bottom-right corner
by: xconv5 ¼ dðxþ 139=2� 75Þ=16e � 1. Here 75 is the offset
computed by the bottom-right corner of the receptive
field. The mapping of other network architectures can be
derived in a similar way.

Implementation of pooling bins. We use the following
implementation to handle all bins when applying the net-
work. Denote the width and height of the conv5 feature
maps (can be the full image or a window) as w and h. For a
pyramid level with n � n bins, the ði; jÞth bin is in the range

of ½bi�1
n wc; d in we� � ½bi�1

n hc; d in he�. Intuitively, if rounding is

needed, we take the floor operation on the left/top bound-
ary and ceiling on the right/bottom boundary.

Mean subtraction. The 224 � 224 cropped training/testing
images are often pre-processed by subtracting the per-pixel
mean [3]. When input images are in any sizes, the fixed-size
mean image is not directly applicable. In the ImageNet data-
set, we warp the 224 � 224 mean image to the desired size
and then subtract it. In Pascal VOC 2007 and Caltech101, we
use the constant mean (128) in all the experiments.
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